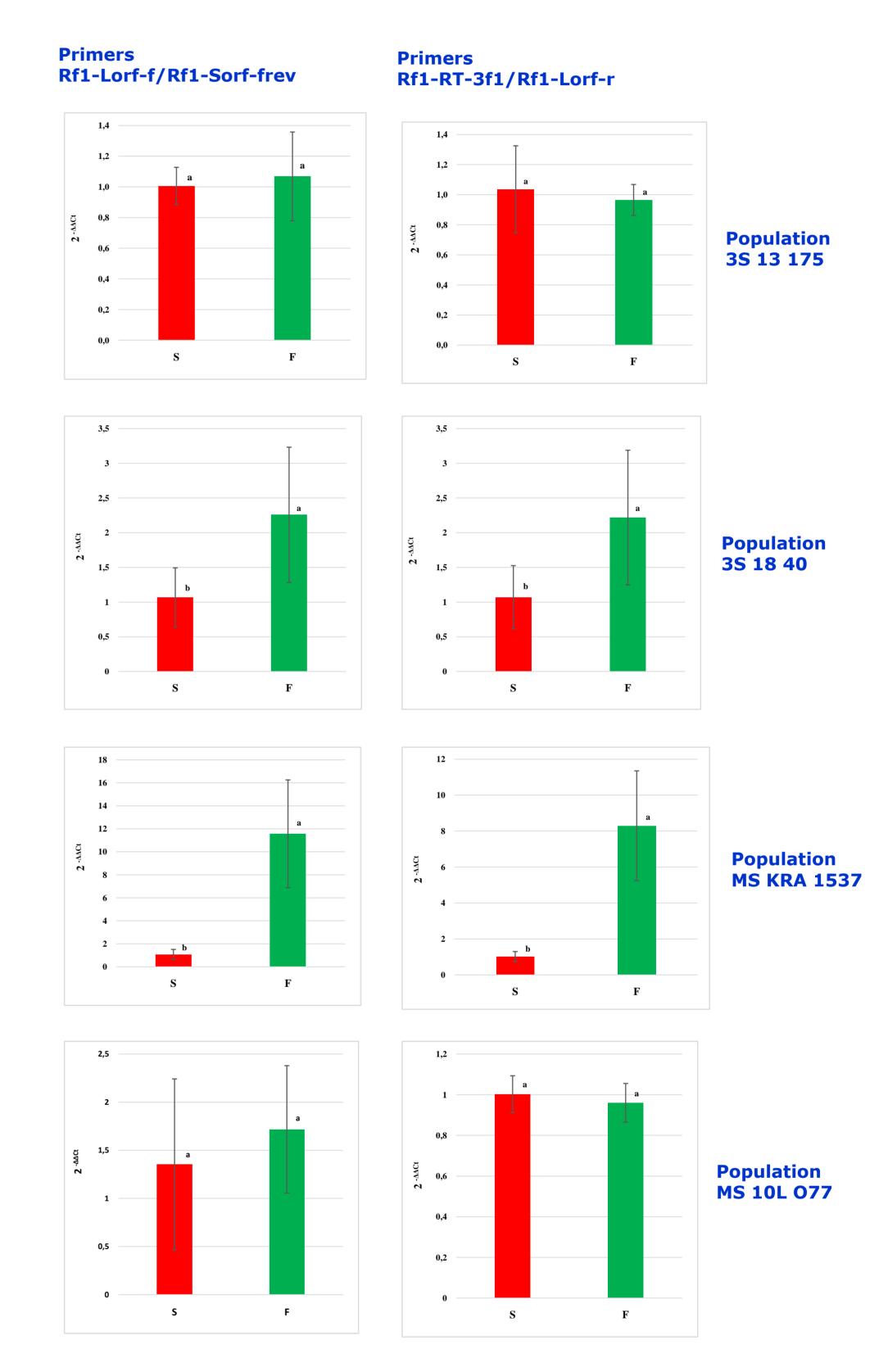


# Plant Biology Europe, 3-6 July 2023, Marseille (France)

# Quantitative effects associated with male fertility restoration by the *Rf1* gene in sugar beet

# Marek Szklarczyk, Beata Domnicz, Jan Biel and Magdalena Simlat


## University of Agriculture in Krakow Al. Mickiewicza 21, Krakow, Poland (e-mail: marek.szklarczyk@urk.edu.pl)

## Introduction

In sugar beet plants the presence of the sterilizing cytoplasm (S-cytoplasm) impairs pollen production. This effect can be suppressed by the Rf1 (X) gene identified by Owen (1945) and cloned by Matsuhira et al. (2012). The fertility restoring allele (Rf1/X) shows quadruplication of a sequence coding for an OMA1-like protein. Only one copy of this sequence is present in the maintainer allele (rf1/x). The purpose of this study was to check if fertility restoration by the Rf1 gene is associated with accumulation of mRNAs encoding this OMA1-like protein.

## Plant material

Four populations were included in the analysis – they segregated into male-sterile and male-fertile (restored) plants. In a given population either phenotypic class was represented by 4-6 plants. All these population resulted from crosses between a male-sterile plant and a candidate maintainer plant. The plant material was developed in KHBC Straszków, Poland.



#### Methods

Total cellular RNA was isolated from flower buds using commercially available kits with adsorption columns. The resulting RNA preparations were treated with DNase – e.g. from Turbo DNA-free Kit (Thermo Fisher Scientific). Reverse transcription was performed using First Strand cDNA Synthesis Kit (Thermo Fischer Scientific). For priming random hexamers were used. Real-time PCRs were prepared with the Maxima SYBR Green/ROX qPCR Master Mix (Thermo Fischer Scientific) and run in the QuantStudio 3 Real-Time PCR System with the following program:

| initial denaturation | 95°c – 10 min.                |           |
|----------------------|-------------------------------|-----------|
| denaturation         | 92°c – 45 sec.                |           |
| annealing            | 57°c – 45 sec. – fluorescence | 40 cycles |
|                      | measurement                   |           |
| elongation           | 72°c – 2 min.                 |           |

Two primer pairs were used for the target gene (*Rf1*, they were designed for a conservative region of *Rf1* open reading frames) and one for the reference gene – BvGAPDH (Hoeft et al. 2018). Transcript accumulation was calculated using the comparative delta Ct method and male-sterile plants as calibrators.

End-point RT-PCR was performed according to Szklarczyk et al. (2000) on cDNAs used also for real-time PCR (see above). The primers were designed for a polymorphic microstallite sequence from the *Rf1* ORFs. The reaction products were resolved in a native 11 % polyacrylamide gel stained with ethidium bromide.

#### Results

In two of the analyzed populations - 3S 13 175 and MS 10L 077 - male-sterile and male-fertile (restored plants) did not show significant difference in accumulation of *Rf1* mRNA. In the other two populations male-fertile plants exhibited higher accumulation of these transcripts. In population 3S 18 40 the difference was approx. 2.5-fold and in case of population MS KRA 1537 the difference was approx. 10-fold. For each analyzed population accordant results were produced with both primer pairs for the target gene (Fig. 1).

Qualitative RT-PCR analysis revealed that male-sterile and restored plants produced different amplification profiles – in most cases the male-fertile plants exhibited the presence of a specific amplification product of approx. 140 bp (Fig. 2).

Our results indicate that fertility restoration is associated with the presence of a specific *Rf1* mRNA isoform which in some populations may increase the pool of *Rf1* transcripts in restored plants.

Figure 1. Accumulation of *Rf1* transcripts in male-sterile (S) and male-

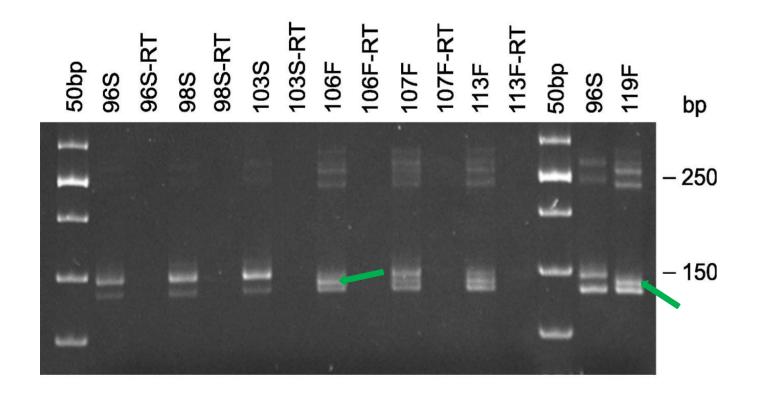
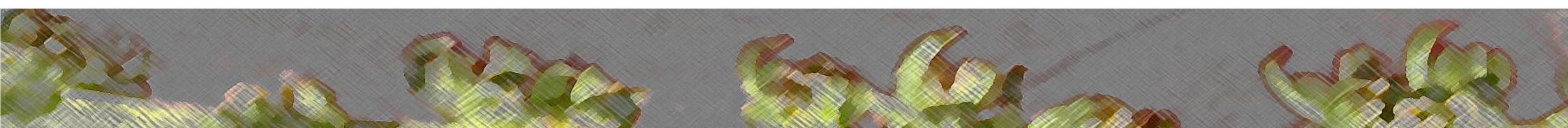



Figure 2. RT-PCR products obtained for male-sterile (S) and malefertile (F) plants from population MS 10L 077. The primers spanned a microsatellite polymorphism from the *Rf1* open reading frames. Arrow – product specific for male-fertile plants. -RT – controls without reverse transcriptase. 50bp - 50 bp ladder, Guangzhou Dongsheng Biotech. fertile (F) plants from four segregating populations. Transcript accumulation was assessed using real-time RT-PCR with two primer pairs for the target gene (*Rf1*). a and b - homogenous groups according to the Duncan's test ( $\alpha = 0,05$ ).

#### Literature


Hoeft N, Dally N, Jung C (2018) Sequence variation in the bolting time regulator BTC1 changes the life cycle regime in sugar beet. Plant Breed 137:412–422

Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A, Yui-Kurino R, Taguchi K, Tamagake H, Mikami T, Kubo T (2012) Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 192: 1347–1358

Szklarczyk M, Oczkowski M, Augustyniak H, Börner T, Linke B, Michalik B (2000) Organisation and expression of mitochondrial *atp9* genes from CMS and fertile carrots. Theor Appl Genet 100:263–270

### Acknowledgements

The research was financed by the Polish Ministry of Agriculture and Rural Development, decision no. DHR.hn.802.13.2022.

