13th International Conference for Plant Mitochondrial Biology (ICPMB2024)

<u>26-30 May 2024, St. Malo (France)</u>

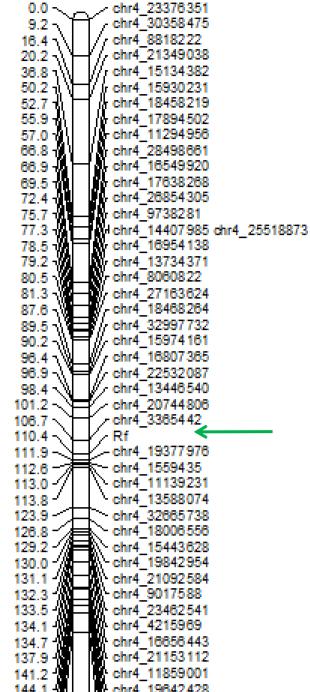
New aspects of fertility restoration in beets

Marek Szklarczyk, Wojciech Wesołowski, Ewelina Ciepłak, Beata Domnicz

University of Agriculture in Krakow Al. Mickiewicza 21, Krakow, Poland (e-mail: marek.szklarczyk@urk.edu.pl)

Introduction

In cultivated beets (*Beta vulgaris* L. subsp. *vulgaris*) cytoplasmic male sterility (CMS) is conditioned by the presence of the sterilizing Owen's cytoplasm (S-cytoplasm). Two nuclear genes are known to suppress its sterilizing effect – X (*Rf1*) from chromosome 3 and Z (*Rf2*) form chromosome 4...

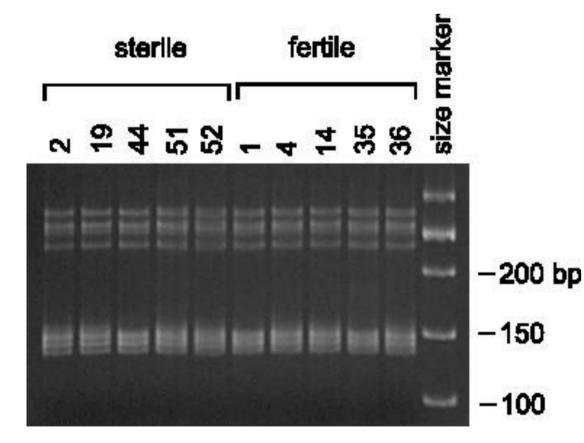

Plant material

We analyzed two populations carrying the S-cytoplasm and segregating into malesterile and male-fertile plants. According to our preliminary data in these populations – table beet 506 and sugar beet S04 786 – fertility restoration was caused by a gene from chromosome 3 and 4, respectively. The plant material was developed in KHBC Straszków, Poland (population S04 786) and Plantico Zielonki, Poland (population 506).

Methods

Individual plants from population S04 786 were subjected to NGS genotyping based on the PE150 Illumina sequencing. The obtained sequence reads were mapped to chromosome 4 using BWA (Durbin and Li 2009). The resulting SAM files were converted into the binary form (BAM files) using SAMtools (Li et al. 2009). This program was also used for sorting the BAM files and for preparing their indexes. The processed BAM files were analyzed with Platypus (Rimmer et al. 2014). The resulting VCF files contained information about all identified sequence polymorphisms which subsequently were subjected to the following filtration steps: elimination of low quality polymorphisms (VCFtools, Danecek et al. 2011), selection of bi-allelic polymorphisms (VCFtools), elimination of polymorphisms with more than five unidentified genotypes (custom Awk script, W. Wesołowski), selection of polymorphisms spaced less than 10 kb (custom Awk script, W. Wesołowski). The filtrated polymorphisms were used for linkage regression mapping with JoinMap (Van Ooijen 2006). Tab. 1. Number of polymorphisms from chromosome 4 on different filtration steps for population S04 786.

Filtration stage	No. of polymorphisms
All polymorphisms generated by Platypus	2 676 049
High quality bi-allelic polymorphisms	546 237
Polymorphisms with at max. 5 unidentified genotypes	150 406
Polymorphisms with 1 : 1 segregation	732
Polymorphisms spaced with 10 kb	495


Individual plants from population 506 were genotyped with two DNA markers:

- Rf1-Morf anchored in the *Rf1* locus,
- 3-363/TaqI anchored in other location of chromosome 3.

Results

Population 506 was genotyped with two molecular markers – the first (Rf1-Morf) was anchored within the X (Rf1) locus and did not differentiate male-sterile and male-fertile plants. The second marker (3-363/TaqI) was from other location on chromosome 3 and it showed co-segregation (71,2 %) with the phenotype. These results indicate that on chromosome 3 in addition to X (Rf1) there is yet another fertility restoring gene.(Figs. 1 and 2).

Population S04 786 was subjected to NGS-based genotyping – thorough selection allowed identification of 495 sequence polymorphisms from chromosome 4. A high density linkage map of chromosome 4 was constructed with the use of these polymorphisms and phenotypic segregation. Based on the physical location of polymorphisms closely linked to the phenotypic locus several PPR protein-coding genes were selected as candidates for the Z (*Rf2*) restorer. (Fig. 3, Tabs. 2 and 2).

141.2 chr4 11859001
144.1 - chr4 19642428
144.8 + chr4_537051
147.2 chr4 857965
147.4 chr4_21221012
148.9 chr4 6437669
150.9 - chr4 11270245
155.6 chr4_22899115
173.4 chr4_25564694
174.7 - chr4_3109778
475.4
175.2 chr4 24898918
175.9 chr4 9957515
177.6 chr4 31466763
178.1 chr4 11929499
178.5 chr4 21795593
179.3 chr4_13161313
180.3 chr4 20810859
189.1 chr4 24516
189.7 chr4 19336778
192.8 chr4 7977698
193.3 chr4_8046350
198.4 10 chr4 8769156
205.4 chr4 20107483
205.5 chr4 11096773
209.2 chr4 13906100
220.0 chr4_18128446
222 0 J
240.6 chr4_30986505
248.2 chr4_29379263
283.9 chr4 12250096

Fig. 3. Genetic map of sequence polymorphisms from chromosome 4 for population S04 786. Arrow – position of the *Rf* gene.

Tab. 2. PPR genes neighboring sequence polymorphisms linked to therestorer from population S04 786.

Polymorphism	Polymorphism location [cM]	Nearest PPR gene	Distance from the nearest PPR gene [bp]
chr4_27163624	81,335	LOC104891448	1950348
chr4_18468264	87,607	LOC104891215	610452
chr4_32997732	89,53	LOC104891881	578509
chr4_15974161	90,169	LOC104890958	2415859
chr4_16807365	96,422	LOC104891215	2271351
chr4_22532087	96,901	LOC104891273	1708765
chr4_13446540	98,445	LOC104890958	103982
chr4_20744806	101,178	LOC104891273	76317
chr4_3365442	106,663	LOC104890121	183884
Phenotype (<i>Rf</i>)	110,367	_	_
chr4_19377976	111,902	LOC104891235	184480
chr4_1559435	112,607	LOC104889967	81538
chr4_11139231	112,986	LOC104890819	118337
chr4_13588074	113,819	LOC104890958	29772
chr4_32665738	123,907	LOC104891881	246515
chr4_18006556	126,75	LOC104891215	1072160
chr4_15443628	129,181	LOC104890958	1885326
chr4_19842954	129,957	LOC104891235	278587
chr4_21092584	131,079	LOC104891273	269262

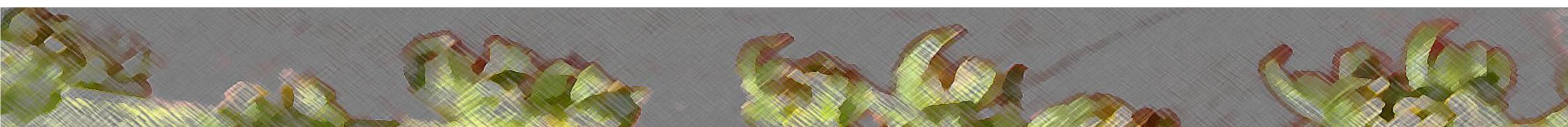
Fig. 1. Genotyping with marker Rf1-Morf for selected male-sterile and male-fertile plants from population 506.

Fig. 2. Genotyping with marker 3-363/TaqI for selected plants from population 506.

Literature

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27: 2156-2158

Durbin R, Li H (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754-1760


Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079

Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Wilkie AOM, McVean G, Lunter G (2014) Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46: 912-918

Van Ooijen JW (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

Acknowledgements

The research was financed by the Polish Ministry of Agriculture and Rural Development, decision no. DHR.hn.802.14.2023.

